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Abstract:  
 

The coexisting liquid and vapor densities and the pressure of ethane are predicted from 
a global equation of state in the vicinity of the critical point. Specifically, a crossover 
thermodynamic potential is used to represent the thermodynamic data of ethane accurately. The 
hook of the rectilinear diameter very close to the critical point is reproduced using this model 
and the scaling laws. 
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INTRODUCTION:  
 

 The critical thermodynamic behavior of fluid systems has been the subject of several 
investigators [1], conducted in analogy with the 3-dimensional Ising-like systems. The 
thermodynamic surface of fluids exhibits a singularity at the critical point. This behavior can 
be characterized in terms of scaling laws with universal critical exponents and universal 
scaling functions [1-3]. Unlike 3-dimensional Ising-like systems, fluids exhibit a lack of vapor-
liquid symmetry in its coexistence-curve. In the present work, we give the application of the 
crossover model to the coexistence-curve diameter to ethane, and show that we can reproduce 
the liquid-vapor coexistence curve diameter only by using a newly formulated equation of state 
for ethane [4]. 

 
FUNDAMENTAL EQUATION: 
 

 Starting from earlier work Nicoll et al. [5-7], we have developed a crossover model to 
represent the thermodynamic properties of fluids in the critical region [5]. This crossover 
model is based on the renormalization group theory of critical phenomena to include the 
cooperative effects associated with the long-range critical fluctuations up to a maximum 
microscopic wavenumber. 
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Let ρ be the density, T the temperature, P the pressure, µ the chemical potential and 
A/V the of Helmholtz free energy per unit volume. We make these properties dimensionless 
with the aid of the critical parameters [4, 8]: 
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In addition we define 
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Here )~(~0 Tµ and )~(~

0 TA  are analytic background functions of T subject to the conditions that 
at the critical temperature 0)(~ ==∆ cTTµ and .  1)(~

0 −== cTTA
 
Classical equations of state for the Helmholtz free energy density A imply that the 

classical part Acl has an asymptotic expansion of the form: 
 
 

 
 

here t and M are temperature-like and density-like variables related to ∆T and ∆ρ in a 

 
he crossover function Y   in Eq. (6) is to be determined from: 
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manner to be specified below. The coefficient u0 of the M4 term in (4) is Λ=uu0 , where Λ a 
dimensionless cutoff wave number [9] is. In order to obtain a fundamental equation that can 
be applied in a large range of densities and temperatures around the critical point we 
renormalize t, M and u0 to obtain: 
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where the functions T, D, U, V and K are defined by 
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u* is another universal 
Table 1. The variable κ is related to the inverse correlation length and is 
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 as:  

symmetry. The expression of (9) for 

η, ω and ωa are universal critical exponents, u* is another universal 
Table 1. The variable κ is related to the inverse correlation length and is 

measure of distan

efinition 

 
where c is the mixing parameter. The variables t and M are related to ∆T and ∆ρ as:  

 
where d1 is a constant representing global symmetry. The expression of (9) for 

The constants ν, η, ω and ωa are universal critical exponents, 
constant presented in 
a 
constant presented in 
a ce from the critical point. 
 

The effect of the lack of symmetry in fluids can be incorporated by the mixing of the 
field variables t and M through the following d

ce from the critical point. 
 

The effect of the lack of symmetry in fluids can be incorporated by the mixing of the 
field variables t and M through the following d
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where c is the mixing parameter. The variables t and M are related to ∆T and ∆ρ
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where d1 is a constant representing global A~∆  is to be 

 To specify the Helmholtz free–energy density completely the analytic substituted into (3).
background functions )~(~0 Tµ and )~(~

0 TA  are represented by truncated Taylor expansions 
through the relations: 
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APPLICATION TO ETHANE: 
 
   Ethane is an important substance due to Its presence In most natural gases and 

rspetroleum. The crossover paramete  u  and Λ, the scaling-field parameters c, ct, cρ and 1, the 
lassical parameters and the background parameters Ã  which can be 

d
c 05 06 14 22a , a , a  a  j

determined by fitting the crossover model to the P-ρ-T data of Funke et al. [10] associated 
with those of Claus et al. [11]. The system dependent parameters are presented into Table 1. 

 
We denote the liquid density by .liqρ  and the vapor density by .vapρ , cρ  as the critical 

density, and T~∆  the reduced temperature. Then close to the critical point, the 
renorm
 

 characterizes the divergence of the specific heat at 
ven in Table 2. A comparison 

f the obtained equation of state [4] with experimental data of Pestak et al. [13]  and Douslin 

alization-group theory predicts [12] the following equation: 
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where α is the critical exponent that
constant volume, ∆, and ∆a = ωaν are other critical exponents gi
o



and Harrison [14] and those of Funke et al. [10] rectilinear diameter is presented in Figure 1. 
In this comparison the offset of Pestak’s  
 
 Finally, we present in Figs. 1-3, the comparison of the crossover model with the 
experimental data of the rectilinear diameter, 

 
liquid and vapor densities and their differences, 

s reported by Funke et al. [10], Pestak et al. [13],  Douslin and Harrison [14], and those 

or ethane were used to determine any of the 
system-dependent parameters in the crossover equation of state. The offset of Pestak’s data  
is p

a
reported by Khazanova and Sominskaya [15].  

 
The data sets reported by Funke et al. [10] show  satisfactory consistency, if one keeps in 

mind that none of the saturated density-data f

robably due to the fact that these density-data were obtained from measurements of the 
refractive index, then the data of this latter were converted to densities using values from 
Lorentz-Lorentz formula. However, it is well known that the Lorentz-Lorentz formula is 
only valid at low densities, and even at moderate densities the deviations of the Lorentz-
Lorentz formula from the true values could amount to as much as a few percent. 

 
Table 1: Critical exponents 

 
ν= 0.630, η= 0.033,α=2-3ν=0.110, ∆=0.51, ω u*=0.47 a=2.1,  

 
 

 
Table 2: System-dependent constants for C2H6 

 

Critical parameters: T  = 305.322,  P  = 4.8722  MPa, ρc = 6.86 mol L-1

rossover parameters: 

c c
 
C u = 0.2269, Λ = 3.288 

caling-field parameters: ct = 1.9836, cρ = 2.4318, c = -0.0224  

-ρ-T background parameters: Ã0 = -1, Ã1 = -5.453, Ã2 = 3.988, Ã3 = -2.306, Ã4 = 7.541, d1= -

 

nge of validity of the equation of state: 

.0246

 
S
 
P
0.2782 
  
Classical Parameters: a05 = -0.499, a06 = 1.453, a14 = 0.299, a22 = 0.207 
 
Ra
 

 ≤  ≤T∆ ~ 0.1965      and    0.496-0 ≤≤ cρρ / 1.68   
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